
Artificial Intelligence 292 (2021) 103429
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Weakly-supervised sensor-based activity segmentation and 

recognition via learning from distributions

Hangwei Qian, Sinno Jialin Pan ∗, Chunyan Miao

Nanyang Technological University, Singapore

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 February 2019
Received in revised form 28 June 2020
Accepted 10 November 2020
Available online 30 November 2020

Keywords:
Human activity recognition
Sensor readings segmentation
Kernel mean embedding

Sensor-based activity recognition aims to recognize users’ activities from multi-dimensional 
streams of sensor readings received from ubiquitous sensors. It has been shown that data 
segmentation and feature extraction are two crucial steps in developing machine learning-
based models for sensor-based activity recognition. However, most previous studies were 
only focused on the latter step by assuming that data segmentation is done in advance. In 
practice, on the one hand, doing data segmentation on sensory streams is very challenging. 
On the other hand, if data segmentation is considered as a pre-process, the errors in data 
segmentation may be propagated to latter steps. Therefore, in this paper, we propose 
a unified weakly-supervised framework based on kernel embedding of distributions to 
jointly segment sensor streams, extract powerful features from each segment, and train 
a final classifier for activity recognition. We further offer an accelerated version for large-
scale data by utilizing the technique of random Fourier features. We conduct experiments 
on four benchmark datasets to verify the effectiveness and scalability of our proposed 
framework.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Activity recognition, as an important application of artificial intelligence [52], has been used in a wide spectrum of 
real-world applications, such as health care, smart homes, security and assisted living [8,19,5,23,11,39]. The goal of activity 
recognition is to automatically recognize human’s activities or behaviors from a series of received signals. Traditionally, 
in computer vision, a large number of studies have been done on recognition of gestures and activities from still images 
and videos [49,9]. However, due to the privacy issue, vision-based activity recognition systems can only be used in some 
restricted environments. With the development of sensor technology, various wireless sensors, such as radio-frequency 
identification (RFID), WiFi, wearable sensors, etc, are widely available in our everyday lives. Recent efforts have been shifted 
to the development of sensor-based activity recognition systems.

In sensor-based activity recognition, the inputs are streams of low-level multivariate sensor readings and the outputs are 
labels of various activities. In the past two decades, machine learning-based methods have shown promising performance 
for sensor-based activity recognition. A typical procedure of training a learning-based activity recognition model includes 
three main stages: 1) data segmentation, which identifies those length-variate segments of the multivariate data streams 
that likely contain information about activities, 2) feature extraction, which transforms low-level sensor readings of each 
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segment to a vector of features that are discriminative to recognize activities, and 3) training a classifier, which builds 
a classifier to capture the relationship between features and activities or class labels. When data streams are perfectly 
segmented and powerful features are extracted, any standard classification algorithm can be used to train a classifier for 
activity recognition. Thus, data segmentation and feature extraction are the crucial stages in the procedure.

Regarding feature extraction from a segment of multivariate sensory streams, previous studies have been focused on 
constructing statistical or structural features [35,27], as well as spatial and temporal features [36,50,15]. However, these 
solutions fail to retain all the important information of a segment. In our preliminary work [37], we proposed a new feature 
extraction method for activity data based on kernel embedding of distributions [45,42], which is able to extract infinite
orders of moments underlying each segment. Empirical results have shown that the features extracted by kernel embed-
ding are powerful to distinguish instances among different classes (activities). However, similar to most feature extraction 
approaches, in [37], we assume data segmentation is performed in advance.

Compared with feature extraction, data segmentation of sensory streams of activity data is much less investigated [19,3,
53]. To partition continuous steaming activity data, existing approaches typically move a sliding window over the data with 
static or dynamic sizes [43,33]. The difference between two adjacent windows is computed against some threshold to decide 
whether a breakpoint is found or not. However, how to identify the optimal window size remains an open problem [4]. One 
alternative approach is to detect activity transitions or boundaries. To achieve this, it is often assumed that the data adheres 
to some degree of homogeneity, such as constant [28,7], linear and polynomial models [13]. For these parametric models, 
the changepoints correspond to changes in the parameter(s). For activity data, it is often improper to feed the activity data 
into parametric models due to the complexity and large variations of activity data.

In this paper, we extend our preliminary work [37] to an end-to-end framework for sensor-based activity recognition, 
which enables joint learning of segmentation, feature extraction as well as final classification. Specifically, the continuous 
flow of activity data is first partitioned into segments with weak supervision. Kernel embedding of distributions is applied 
to extract sufficient statistical features of each segment, and to further learn a classifier for activity recognition. We cast the 
whole process as a weakly-supervised Support Measure Machines (SMM) [32,31] formulation to jointly update the learnable 
parameters of different components. Moreover, we adopt the technique of random Fourier features (RFF) [38] to develop an 
accelerated version to tackle the scalability issue.

To summarize, our contributions are 3-fold:

• We proposed an end-to-end weakly-supervised learning framework, denoted by S-SMMAR , for activity recognition, 
where data segmentation, feature extraction and activity classification can be done jointly.

• We further propose an accelerated version, denoted by R-SMMAR , to scale up the proposed framework.
• Extensive experiments are conducted to demonstrate the effectiveness of the proposed framework compared with state-

of-the-art methods.

2. Related work and preliminary

2.1. Segmentation on sensory activity data

Sliding window is a commonly used approach to segment activity data streams. The size of a segmentation window 
is selected empirically and based on hardware limitations [8]. For example [2] proposed to determine the sizes of sliding 
windows based on whether there are sufficient differences between adjacent windows. However, an optimum window 
size varies depending on the characteristics of activities and a fixed window size may not suit all activities. Akbari et al. [1]
proposed to first segment data with relatively large windows, and then split those segmentations that likely contain multiple 
activities into smaller sub-windows in order to fine-tune the label assignment. Methods with adaptive sliding windows have 
been also proposed [34]. Additionally environmental contextual information, such as location, time and ambient attributes 
of the objects, can also be utilized to segment activity data by a rule-based method [48]. Li et al. [24] applied existing 
multivariate segmentation methods to activity data, aiming to maximizing the likelihood of the data.

2.2. Segmentation on time series data

As sensor-based activity data is a type of time series data, here we also briefly review some classic approaches to 
time series data segmentation. Dynamic programming (DP) is usually utlized to find the optimal segmentation of time 
series data [18]. To further alleviate the computational burden, various pruning-based methods are proposed. The forward-
backward DP algorithm [14] computes several most probable segment candidates based on the reversibility property of 
time series data. The cp3o method [54] removes less optimal candidate changepoints by comparing candidates to a specific 
solution during each iteration. The PELT method [21] limits the set of potential changepoints by removing those indices of 
data which cannot reduce the cost function performed at each iteration. The pDPA method [41] prunes the less optimal 
candidates based on a functional representation of cost functions which introduces one additional scalar parameter.
2
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2.3. Feature extraction for activity recognition

Statistical approaches aim to compute and concatenate some orders of moments of a segment as features to represent 
the segment [23]. Structural approaches take into account the interrelationship among data. The ECDF approach [16,35]
leverages distributions’ quantile function to preserve the overall shape of the distribution as well as the spatial positions. 
Lin et al. [26] proposed the SAX method to discretize data into symbolic strings to represent equal probability mass. In ad-
dition, spatial and temporal features can be extracted as well [36,50,15]. The feature extraction component in our proposed 
framework aims to extract all orders of moments to form a concatenated feature vector for each segment, and thus falls 
into the category of statistical approaches.

2.4. Kernel embedding of distributions

As our proposed framework is based on the technique of kernel embedding of distributions, here we briefly introduce 
some important concepts of the technique. Consider an activity which lasts for n timestamps, it can be modeled as a sample 
X = {xi}n

i=1 drawn from a probability distribution P , where each instance xi is of d dimensions. The technique of kernel 
embedding [45] for representing an arbitrary distribution is to introduce a mean map operation μ(·) to map instances to a 
Reproducing Kernel Hilbert Space (RKHS), H, and to compute their mean in the RKHS as follows,

μP := μ(P ) = Ex∼P [φ(x)] = Ex∼P [k(x, ·)], (1)

where φ : Rd → H is a feature map, and k(·, ·) is the kernel function induced by φ(·). In this way, the feature vector φ(x)
is learned from raw data x. If the condition Ex∼P (k(x, x)) < ∞ is satisfied, then μP is also an element in H. It has been 
proven that if the kernel k(·, ·) is characteristic, then the mapping μ : P → H is injective [46]. The injectivity property 
indicates an arbitrary probability distribution P is uniquely represented by an element in a RKHS through the mean map. 
As each distribution can be mapped to H, the operations defined in H, such as inner product and distance measure, are 
capable of estimating similarity or distance between distributions.

In practice, an underlying probability distribution of a sample is unknown. In our case, a finite number of n samples are 
collected for training. Hence, an unbiased empirical estimation is applied to approximate the mean map as follows,

μ̂P = 1

n

n∑
i=1

φ(xi) = 1

n

n∑
i=1

k(xi, ·). (2)

Though in theory, the dimension of μ̂P is potentially infinite, by using the kernel trick, the inner product of two probability 
distributions in a RKHS can be computed efficiently through a kernel function associated to the RKHS,

〈μ̂Px
, μ̂Pz

〉 = k̃(μ̂Px
, μ̂Pz

) = 1

nxnz

nx∑
i=1

nz∑
j=1

k(xi, z j), (3)

where k̃(·, ·) is a linear kernel defined in the RKHS, nx and nz are the sizes of the samples X and Z drawn from Px and Pz , 
respectively. In general, k̃(·, ·) can be a nonlinear kernel defined as follows,

k̃(μ̂Px
, μ̂Pz

) = 〈ψ(μ̂Px
),ψ(μ̂Pz

)〉, (4)

where ψ(·) is the associated feature mapping of the nonlinear kernel k̃(·, ·).

2.5. Random Fourier features

In kernel embedding of distributions, a kernel matrix needs to be computed, which is computationally expensive, espe-
cially when training data is large-scale. The technique of random Fourier features has been proposed to approximate the 
kernel computation efficiently [38]. Specifically, if a kernel is a shift-invariant kernel, i.e., k(x, x′) = k(x − x′), then one can 
construct a randomized feature map of D dimensions, z = [√2cos(w


1 x + b1, ..., 
√

2cos(w

D x + bD ]
 to approximate values 

of the kernel via

k(x,x′) ≈ z(x)
z(x′), (5)

where wi ∼ p(w), which is k(·, ·)’s Fourier transform distribution on RD , and bi is sampled uniformly from [0, 2π ].
3
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3. The proposed methodology

3.1. Problem statement

In our problem setting, we are given a stream of multivariate activity data X = {xt}N
t=1 where xt ∈ Rd×1 is a vector of 

signals received from d sensors at the t-th timestamp, which is referred to as a frame in the segment. Associated with 
signals are a sequence of K activity labels y = {yk}K

k=1, where yk ∈ {Y1, ..., Y L} is a set of predefined L activity categories. 
Each yk may last for nk timestamps, and nk can be different, with the sum of all the nk ’s to be equal to the total duration 
N . This setting is referred to as a weakly supervised setting, as no ground-truth partition and ground-truth label on each 
segment is provided in training, while only a sequence of activity labels is available for the whole data stream. Note that this 
setting is more practically applicable, since human usually can remember effortlessly the sequence of activities conducted 
in a time period, but the exact starting and ending time require expensive annotation effort.

Our goal is to first find K − 1 breakpoints indices I = {Ik|1 < Ik < N, Ik < Ik+1}K−1
k=1 to segment the stream of activity data 

into K adjacent segments {Xk}K
k=1, where Xk = {xIk−1+1, ..., xIk } such that each segment Xk is aligned with an activity yk of 

the sequences of activities sequentially. With the K segments, each of which, Xi , is aligned with a label yi ∈ {Y1, ..., Y L}, we 
aim to train a classifier f to map {Xi}’s to {yi}’s.

For testing, we suppose the segmentation is done, and we are given m new unseen segments {X∗
i }m

i=1, each of which 
corresponds to an unknown label. We use the trained classifier f to make predictions.

3.2. Problem formulation in weakly-supervised setting

In the weakly-supervised setting, given the data stream X = {xt}N
t=1, the ground-truth labels on each segment as well 

as breakpoints indices I are unknown, while only the sequences of activities y = {yk}K
k=1 are available, where K is the 

total number of activity segments in the stream consisting of L classes of activities. We propose the following optimization 
problem to jointly learn the classifier f and the segmentation in terms of I,

min
f ,I,C

1

K

K∑
k=1

L∑
j=1

Ckj�( f (Xk), Y j; I) + λ1�1(‖ f ‖H̃) + λ2�2(I), (6)

s.t. f (Xt) = yt,∀k ∈ {1, ..., K },
L∑

j=1

Ckj = 1,∀k ∈ {1, ..., K },

where �(·) is a data-dependent loss function, λ1, λ2 > 0 are the tradeoff parameters to control the impact of the regulariza-
tion terms �1(·) and �2(·). H̃ is a RKHS associated with the kernel k̃(·, ·), which will be explained later. The first term in 
the objective is the weighted average loss function on classification, and C ∈ RK×L is the matrix of confidence scores, with 
each element Ckj being the confidence score of the k-th segment associated with the j-th activity class. The confidence 
score matrix leads the classifier f to correctly learn those easy-to-classify segments first. A higher confidence score of a 
segment means a higher probability of a correct prediction by the classifier. Therefore, the classifier tends to predict the 
corresponding label correctly, or the weighted loss function is increased by a larger value compared to those with smaller 
confidence scores. The reason why we use the weighted average loss function is that we do not have a ground-truth label of 
each segment. Using the weighted average loss across all the possible classes is a reasonable approach to measure prediction 
errors. This idea is similar to the expectation loss used in e-SVM [55], which was originally proposed to address the object 
detection task under weak supervision, where only bounding box annotations for images are available.

The second term is a regularization term on the learned classifier to prevent overfitting. The form of �1(·) is chosen 
to be a strictly monotonically increasing function, with a special choice being the linear function as used in our previous 
work [37]. The last term is the regularization term on segmentation breakpoints to ensure the segmentation results to be 
reasonable, and is set to be the average of the MMD distance between segments with the same predicted label:

�2(I)

= 1

M

∑
1≤i< j≤N

f (Xi)= f (X j)

MMD(Xi,X j)

= 1

M

∑
1≤i< j≤N

f (X )= f (X )

∥∥∥∥∥
1

ni

ni∑
k=1

(φ(xi
k)) − 1

n j

n j∑
k=1

(φ(x j
k))

∥∥∥∥∥
2

(7)
i j

4
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= 1

M

∑
1≤i< j≤N

f (Xi)= f (X j)

⎛
⎝ 1

n2
i

∑
k1,k2

k(xi
k1

, x j
k2

)− 2

nin j

∑
k1,k2

k(xi
k1

, x j
k2

)+ 1

n2
j

∑
k1,k2

k(xi
k1

, x j
k2

)

⎞
⎠

1
2

,

where xk
i denotes the k-th instance in the i-th segment Xi , and ni is the length of segment Xi . The kernel k(·, ·) is induced 

by the feature map φ(·).
The first constraint in (6) is to enforce that the sequence of predicted labels is aligned with the sequence of the ground-

truth activities. The second constraint is to ensure that the summation of the confidences over all possible classes for each 
segment equals 1.

3.3. Alternating optimization for joint segmentation and classification

Note that the optimization problem (6) is a joint learning framework, where the breakpoints influence the formation of 
segments of activities, while the predicted labels further influence the detection of breakpoints. Therefore, in this section, 
we propose an alternating optimization algorithm to solve the problem. In the sequel, we denote our proposed joint learning 
algorithm for activity segmentation and classification by S-SMMAR . The overall algorithm is shown in Algorithm 1.

Algorithm 1 The proposed S-SMMAR algorithm.

Input: A data sequence X = {x1, ..., xN } ∈Rd×1, a coarse label sequence y = {yk}K
k=1 ∈ {Y1, ..., Y L}, the number of breakpoints K − 1

Output: the breakpoints indices I and the classifier f
1: procedure main

2: Randomly initialize breakpoints indices I = {Ik}K−1
k=1 and the matrix of confidence scores C

3: while not convergent do
4: Fix I and C, update f with (11)
5: Fix f , update C as described in the 2nd paragraph in Section 3.3.2
6: Update candidate range of breakpoints with (15) and (16)
7: Fix f and C, update I by solving (14)

8: return I, f , and C

3.3.1. Learning the classifier f with fixed I and C
With I and C fixed, the K segmentations Xi ’s from X are known, and their corresponding class labels are also known 

by aligning them with the sequence of activities y. Therefore, the optimization problem (6) is reduced as the following 
unconstrained optimization problem,

min
f

1

K

K∑
k=1

Ckk̂�( f (Xk), yk) + λ1�1(‖ f ‖H̃), (8)

where k̂ is the index of yk in {Y1, ..., Y L}.
To construct a classifier, in most standard classification methods, the input is required to be a feature vector of fixed 

dimensionality, and the output is a label. However, in our problem setting, the input Xi is a matrix. Moreover, the sizes of 
the different segments can be different. Therefore, standard classification methods cannot be directly applied. As discussed, 
a commonly used solution is to decompose the matrix Xi to ni vectors or frames {xi

k}ni
k=1, and assign the same label yi to 

each vector. In this way, for each segment, one can construct ni input-output pairs {(xi
k, yi)}ni

k=1. By combining such input-
output pairs from all the segments, one can apply standard classification methods to train a classifier f . A major drawback 
of this approach is that a single frame of a segment fails to represent an entire activity that lasts for a period of time.

Another approach is to aggregate the ni frames of a segment Xi to generate a feature vector of fixed dimensionality to 
represent the segment. For example, one can use the mean vector x̄i = ∑ni

k=1 xi
k to represent a segment Xi . This approach 

can capture some global information of a segment, but in practice, one needs to manually generate a very high-dimensional 
vector to fully capture useful information of each segment. For example, one may need to generate a set of vectors of 
different orders of moments for a segment, and then concatenate them to construct a unified feature vector to capture rich 
statistic information of the segment, which is computationally expensive.

Different from previous approaches, we consider each segment Xi as a sample of ni instances drawn from an unknown 
probability Pi , and all {Pi}n

i=1 ⊆ P , where P is the space of probability distributions. By borrowing the idea from kernel 
embedding of distributions, we can map all samples to a RKHS through a characteristic kernel, and then use a potentially 
infinite-dimensional feature vector to represent each sample, and thus each segment. As the kernel embedding with charac-
teristic kernel is able to capture any order of moments of the sample, the feature vector is supposed to capture all statistical 
moments information of the segment. With the new feature representations for each segment in the RKHS, we can train a 
classifier with their corresponding labels for activity recognition.
5
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To be specific, firstly, each segment or sample Xi is mapped to a RKHS with a kernel k(xi
k1

, xi
k2

) = 〈φ(xi
k1

), φ(xi
k2

)〉 via an 
implicit feature map φ(·), and represented by an element μi in the RKHS via the mean map operation:

μi = 1

ni

ni∑
k=1

φ(xi
k). (9)

As a result, we have K pairs of input-output in the RKHS {(μ1, y1), ..., (μK , yK )}. Then our goal becomes to learn a classifier 
f by solving

min
f

1

K

K∑
k=1

Ckk̂�( f (μk), yk) + λ1�1(‖ f ‖H̃). (10)

As shown in our preliminary work [37], by using the representer theorem in [32], the solution of the functional f (·) in (10)
can be represented by

f =
K∑

i=1

αiψ(μi), (11)

where the weights Ckk̂ ’s are incorporated into αi ’s, the feature map ψ : H → H̃ is used for classification, and H̃ is another 
RKHS with a kernel k̃(μi, μ j) = 〈ψ(μi), ψ(μ j)〉 defined by ψ(·). If H̃ = H, then a linear kernel on {μi}’s is used, i.e., 
k̃(μi, μ j) = 〈μi, μ j〉, and (11) can be reduced as

f =
K∑

i=1

αiμi, where αi ∈ R. (12)

By specifying (11) or (12) using the Support Vector Machines (SVMs) formulation,1 we reach the following optimization 
problem, which is known as Support Measure Machines (SMMs) [32],

min
f

1

2
‖ f ‖2

H̃ + η

K∑
i=1

ξi, (13)

s.t. yi f (μi) ≥ 1 − ξi,

ξi ≥ 0,

1 ≤ i ≤ K ,

where H̃ is a RKHS associated with the kernel k̃(·, ·) on P , {ξi}n
i=1 are slack variables to absorb tolerable errors, and η > 0

is a tradeoff parameter. When the forms of the kernels, k(·, ·) and k̃(·, ·), are specified,2 many optimization techniques 
developed for standard linear or nonlinear SVMs can be applied to solve the optimization problem of SMMs.

After the classifier f (·) is learned, given a test segment X∗
p , one can first represent it using the mean map operation

μ∗
k = 1

np

np∑
k=1

φ(xp∗
k ),

and then use f (·) to make a prediction f (μ∗
k ).

3.3.2. Update I and C with fixed f
After obtaining the updated classifier f , we now show how to update Ibkps and C. With f fixed, the optimization 

problem (6) becomes

min
I,C

1

K

K∑
k=1

L∑
j=1

Ckj�( f (μk), Y j; I) + λ2�2(I), (14)

s.t. f (Xt) = yt,∀k ∈ {1, ..., K },
L∑

j=1

Ckj = 1,∀k ∈ {1, ..., K },

1 Note that one can also specify (11) or (12) using other loss functions, which result in different particular approaches.
2 Recall that the kernel k(·, ·) is defined on {Xi}’s to perform a mean map operation for generating {μi}’s, and the kernel k̃(·, ·) is defined on {μi}’s for 

final classification.
6
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where the regularization term �2(I) is defined in (7).
Regarding updating the matrix C, the confidence score Ckj is expected to measure the confidence of the segment Xk that 

belongs to the class Y j . In the supervised setting where the ground-truth labels are available, the confidence score can be 
easily obtained by calculating the accuracy of predicted labels of each segment. However, as we discussed, the annotation 
effort on segmentation is highly expensive as the exact start and end time stamps of each activity need to be marked for 
training. In our proposed weakly-supervised setting, where we only have access to the coarse activities sequence, we aim 
to make the confidence score of a predicted segment depending on the distance to the decision boundary. Specifically, for 
classification of L classes activities, a common practice is to learn L classifiers by one-vs-rest mechanism, which transforms 
the problem into learning multiple binary classifiers. For each binary classifier, the distance of the data point to the decision 
boundary matters in the way that a larger distance reflects the easier classification of the data point. Therefore, we set 
the confidence score to be 1

1+exp(A f (μ)+B)
in the binary case, and further normalize the scores in the multi-class case. The 

confidence score is similar to the Platt’s probabilistic output [25], where A and B are decided by the data distribution prior.
Regarding updating I, Dynamic Programming (DP) can be applied to find breakpoints one by one sequentially, but the 

candidate range of a new breakpoint is from the former breakpoints to the end of a time series, which is computationally 
expensive. Therefore, in the literature, various algorithms have been proposed to alleviate the computational cost by limiting 
the searching range of each breakpoint. Specifically, the computational cost is alleviated by pruning the set of candidate 
breakpoint locations and finding the next breakpoint in the restricted set. However, as discussed in Section 2.2, existing 
algorithms are supposed to work under non-trivial assumptions on the data property or the model.

In our proposed algorithm, we also aim to prune the candidate set to reduce the complexity, but we do not have any 
assumptions on the data or the model. Different from other pruning methods for DP, our method prunes the candidates 
set from a probabilistic point of view. Specifically, for each segment Xk with breakpoints indices Ik−1 + 1 and Ik being the 
starting and ending locations, respectively, there is a vector of confidence scores, Ck∗ (the k-th row of C), to represent the 
probabilities over all the classes for this segmentation. A larger Ckj indicates the higher probability of the segment k that 
belongs to the class Y j . Intuitively, for a good segment, there should exist a i such that the corresponding confidence score 
Cki is large and all the other confidence scores {Ckj, i �= j}’s are small. Thus, we set the confidence score of the segment 
k to be the maximum of {Ckj |1 ≤ j ≤ L}, i.e., max j Ckj . Our proposed method prunes the candidate range of a breakpoint 
with its neighbors’ status, i.e., the candidate range of Ik is the range of low confidence score neighbors with different labels 
[Ile f t , Iright]:

Ile f t = max(Im|m < k, ym �= yk,and max
j

(Cmj) < ε), (15)

and

Iright = min(Im|m > k, ym �= yk,and max
j

(Cmj) < ε), (16)

where ε is a threshold. In the next iteration, the location indices with lower confidence scores are more likely to be 
modified. And the breakpoints indices with high confidence scores are kept unchanged. In this way, the complexity of DP is 
reduced by pruning the candidate sets of breakpoints as well as reducing the number of modified breakpoints.

After specifying the candidate range of breakpoints, the next step is to go through each candidate range to search for 
an updated breakpoint location for each of the modified breakpoints by minimizing the optimization problem (14) with the 
updated C fixed. Note that the computational cost of the regularization term in (14) can be further reduced by reusing the 
precomputed kernel values in the previous classifier training step.

Precise segmentation of activity stream data is an essential prerequisite for learning an accurate classifier. Once the seg-
mentation of activity data is corrupted, the extracted features are no longer representative for the corresponding activity 
class, hence the learning process of classification would be hindered. From another perspective, a low similarity measure (as 
shown in (4)) between two segments from the same activity indicates two possibilities: 1) the classifier is not trained prop-
erly, and/or 2) the data is not segmented correctly. Thus, with the same similarity measure applied in both the segmentation 
and the prediction phases, the two modules can interact and boost each other in an iterative manner.

3.4. R-SMMAR for large-scale activity recognition

Note that the technique of kernel embedding of distributions used in S-SMMAR makes a feature vector of each segment 
be able to capture sufficient statistics of the segment. This is useful for calculating similarity or distance metric between 
segments. However, it needs to compute two kernels, one is for kernel embedding of the frames within each segment, and 
the other is for estimating similarity between segments. This makes S-SMMAR computationally expensive when the number 
of segments is large and/or the number of frames within each segment is large. To scale up S-SMMAR , in this section, we 
present an accelerated version using fandom Fourier features to construct an explicit feature map instead of using the kernel 
trick.

To be specific, based on (9) and (5), the empirical kernel mean map on a segment Xi with explicit random Fourier 
features can be written by
7
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Table 1
Statistics of the four datasets. Note that in the table, “Seg.” denotes segments, 
“En.” denotes average number of frames per segment, “Fea.” denotes feature 
dimensions, “C.” denotes classes, “freq” denotes frequency in Hz (sampling 
rates of sensors may be various, but we assume the frequency of all sensors 
in a dataset is the same after preprocessing), “Sub.” denotes subjects, and 
“ #Seg.

#C .
” denotes the average number of segments that each class of activity 

has.

Datasets # Seg. # En. # Fea. # C. freq # Sub. #Seg.
#C .

Skoda 1,447 68.8 60 10 14 1 144.7
WISDM 389 705.8 6 6 20 36 64.8
HCI 264 602.6 48 5 96 1 52.8
PS 1,614 100.0 9 6 50 4 269

μi = 1

ni

ni∑
k=1

z(xi
k),

where μi ∈RD . We aim to learn a classifier f (·) in terms of parameters w. If f (·) is linear with respect to {μi}’s, then the 
form of f (·) can be parameterized as

f (μi) = w
μi . (17)

If f (·) is a nonlinear classifier, then it can be written as

f (μi) = w
z̃(μi), (18)

where z̃ : RD → RD̃ is another mapping of Random Fourier Features. (17) is a special case of (18) when z̃ is an identity 
mapping. The resultant optimization problem on learning a classifier is reformulated accordingly as follows,

min
w∈RD̃

1

n

K∑
k=1

Ckk̂�(w
z̃(μk), yk) + λ‖w‖2
2. (19)

As z̃(·) is an explicit feature map, standard linear SVMs solvers can be applied to solve (19), which is much more efficient 
than solving (13). Accordingly, in the sequel, we denote this accelerated version of S-SMMAR with random Fourier features 
by R-SMMAR .

4. Experiments

In this section, we investigate three different experimental settings: 1) different segmentation methods with fixed fea-
ture extraction; 2) joint segmentation and classification scenario; 3) feature extraction and classification under the perfect 
segmentation scenario. We conduct comprehensive experiments on four real-world activity recognition datasets to evaluate 
the effectiveness and scalability of our proposed S-SMMAR and its accelerated version R-SMMAR .

4.1. Datasets

The overall statistics of the four benchmark datasets used in our experiments are listed in Table 1.
Skoda [47] contains 10 gestures performed during car maintenance scenarios. 20 sensors are placed on the left and right 

arms of the subject. The features are accelerations of 3 spatial directions of each sensor. Each gesture is repeated about 70 
times.

WISDM is collected using accelerometers built into phones [22]. A phone was put in each subject’s front pants leg 
pockets. Six regular activities were performed, i.e., walking, jogging, ascending stairs, descending stairs, sitting and standing.

HCI focuses on variations caused by displacement of sensors [10]. The gestures are arm movements with the hand 
describing different shapes, e.g., a pointing-up triangle, an upside-down triangle, and a circle. Eight sensors are attached to 
the right lower arm of each subject. Each gesture is recorded for over 50 repetitions, and each repetition for 5 to 8 seconds.

PS is collected by four smartphones on four body positions: [44]. The smartphones are embedded with accelerometers, 
magnetometers and gyroscopes. Four participants were asked to conduct six activities for several minutes: walking, running, 
sitting, standing, walking upstairs and downstairs.

4.2. Evaluation metric

For segmentation, we adopt an indicator Ind to indicate whether the method can find the exact correct number of 
breakpoints. We also adopt the F1 score as our evaluation metric for classification. As the activity recognition datasets are 
8
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imbalanced and of multiple classes, we adopt both micro-F1 score (miF) and weighted macro-F1 score (maF) to evalua-
tion the performance of different methods. Note that the Null class is included during training and testing, and is always 
considered as a “negative” class when computing miF and maF. More specifically, miF is defined as follows,

miF = 2 × precisionall × recallall

precisionall + recallall
,

where precisionall and recallall are computed from the pooled contingency table of all the positive classes as follows,

precisionall =
∑

i TPi∑
i TPi + ∑

i FPi
, and recallall =

∑
i TPi∑

i TPi + ∑
i FNi

,

where i denotes the i-th class of a set of predefined activity categories (i.e., positive classes), and TPi , FPi , and FNi denote 
true positive, false positive, and false negative with respect to i-th positive class, respectively. Different from miF, maF is 
defined as follows,

maF =
∑

i

wi
2 × precisioni × recalli

precisioni + recalli
,

where wi is the proportion of the i-th positive class.

4.3. Experiments for segmentation

4.3.1. Experimental setup
In this section, we compare the segmentation performance of our proposed method with several state-of-the-art base-

lines. The feature extraction is fixed, and our proposed feature extraction method is applied after segmentation. There is 
no splitting of training and testing phase in this experiment. All the raw data as well as the coarse label sequence of the 
activities are available, and the goal is to decide the changepoints between each activity.

4.3.2. Baselines
We compare our proposed method with the following state-of-the-art methods.

• Binseg [12]: binary segmentation method, which finds one breakpoint in the dataset first, then splits the data into two 
subsegments, and the same procedure is applied recursively to subsegments.

• BottomUp [20]: contrary to binary segmentation, bottom-up method starts with many breakpoints and successively 
removes less important ones.

• Window [4]: fixed-size sliding window method with step size to be half the window size.
• KCpE [18]: a kernel-based nonparametric segmentation method which segments multi-dimensional data by minimizing 

intra-segment scatter. Dynamic programming is applied to recursively find breakpoints.
• KCpA [17]: a kernel-based test statistic based upon the maximum kernel Fisher discriminant ratio as a measure of 

homogeneity between segments. Sliding windows are running along the data.
• PELT [21]: a pruning DP method with exact optimal solution under certain conditions.
• E-Divisive [29]: a nonparametric technique which combines bisection and divergence measure to form a hierarchical 

statistical testing.
• e-cp3o and ks-cp3o [54]: dynamic programming with search space pruning. Two popular nonparametric goodness-of-fit 

metrics are utilized as cost functions, namely E-statistics and the Kolmogorov-Smirnov statistics.
• pDPA [40,41]: a functional pruning method which can only handle scalar data. Hence in the experiments, we only use 

the first dimension of the data.

4.3.3. Experimental results
The overall comparison results are listed in Table 2. Our proposed method achieves the best segmentation performance 

on three out of four datasets. All the RI values are quite close, but the classification performance of our proposed method 
is greater than the best baselines with the margin of 9% and 57% on Skoda and PS dataset respectively. It is interesting to 
find out that the performance of the proposed method seems to be relevant to the number of #Seg.

#C .
as listed in Table 1. 

The larger the average number of segments that each class of activity has, the better the performance of segmentation. This 
may shed light on the reason of the so much higher classification performance of the proposed method in PS dataset, since 
the #Seg.

#C .
value is much greater than that of other datasets. This is reasonable, since the more repetitions of activities in the 

dataset, the more accurate the class-wise similarity measure in the proposed method.

4.3.4. Runtime analysis
The runtime of each method is listed in Table 3. The Window method is the quickest baseline. It is expected that kernel-

based methods, such as S-SMMAR , KCpE and KCpA, take more runtime than other baselines due to the computation of 
9
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Table 2
Overall comparison results of segmentation performance on the four datasets (unit: %). NaN indicates that the produced results are infeasible.

Methods
Datasets Skoda WISDM HCI PS

Ind miF±std maF±std miF±std maF±std miF±std maF±std miF±std maF±std
S-SMMAR yes 55.24±2.35 46.91±2.37 29.88±3.52 28.37±3.74 24.04±4.39 15.10±4.32 86.27±3.34 85.63±3.58
Binseg yes 33.31±14.02 25.60±10.87 24.10±5.95 17.97±6.17 26.12±3.87 15.91±3.40 28.56±5.71 27.84±5.61
BottomUp yes 46.43±6.87 36.95±8.91 28.80±2.86 26.86±4.50 21.15±2.65 11.22±4.45 19.84±4.69 17.49±4.19
KCpE yes 45.35±22.25 38.41±18.85 25.24±6.78 20.25±4.71 24.04±4.39 15.10±4.32 20.37±6.56 19.54±5.97
KCPA no 32.53±17.97 24.11±13.82 11.80±5.58 9.35±4.40 28.04±8.65 21.13±10.37 25.58±6.06 21.95±5.20
PELT no 12.13±9.41 6.82±5.32 28.85±3.63 24.48±1.12 26.12±10.85 25.90±10.06 22.01±3.60 18.69±3.72
Window no 0.77±1.08 0.71±0.96 28.42±2.02 26.55±4.45 13.62±4.53 12.96±1.89 16.15±4.89 15.88±4.78
e.divisive yes 23.15±1.25 16.73±1.04 17.56±5.52 18.66±5.45 19.23±0.00 6.20±0.00 13.41±3.61 6.17±1.63
ks.cp3o yes 20.81±0.76 13.29±1.25 13.73±2.45 13.14±1.98 19.23±0.00 6.20±0.00 14.65±2.02 3.79±1.05
e.cp3o yes 22.77±2.51 13.72±2.38 22.53±8.54 16.92±4.22 20.83±0.50 7.20±0.28 14.38±2.56 5.89±0.73
pDPA no NaN NaN NaN NaN NaN NaN NaN NaN

Table 3
Runtime comparisons of all methods on the Skoda dataset.

Methods S-SMMAR Binseg BottomUp KCpE KCPA PELT Window e.divisive ks.cp3o e.cp3o

Runtime 19min23s 67min20s 25s >24h 34min56s 35s 19s 1min48s 139min38s 2min50s

Table 4
Overall comparison results on joint segmentation and feature extraction on four datasets (unit:%).

Methods
Datasets Skoda WISDM HCI PS

miF±std maF±std miF±std maF±std miF±std maF±std miF±std maF±std
S-SMMAR 51.65±6.18 42.98±6.33 28.18±4.13 27.61±4.33 23.88±4.14 15.15±3.97 86.44±3.44 85.81±3.70
ECDF-5 16.29±7.99 9.48±4.68 26.16±3.18 32.08±3.44 14.42±3.99 13.44±3.93 18.11±5.24 17.63±5.33
ECDF-15 22.91±7.86 17.19±5.41 16.83±1.86 21.60±1.42 12.82±7.06 11.65±5.31 16.71±2.99 16.36±2.85
ECDF-30 23.51±7.51 19.79±6.40 10.95±2.61 13.30±3.79 11.86±6.25 9.91±4.28 16.43±1.73 16.11±1.66
ECDF-45 25.96±5.58 23.36±5.54 10.43±3.57 11.18±4.05 10.74±6.86 8.67±3.95 15.87±1.98 15.48±2.01

SAX-3 3.92±3.25 3.48±2.81 16.06±2.56 19.46±3.52 23.88±7.80 14.56±9.54 15.13±2.20 14.58±2.04
SAX-6 2.11±1.89 2.06±1.86 15.28±2.57 18.39±3.24 19.39±3.77 9.48±3.46 16.95±1.46 15.87±1.51
SAX-9 4.15±3.60 3.99±3.46 15.98±2.80 19.24±3.33 20.83±1.57 9.90±2.88 15.48±2.30 14.91±2.30
SAX-10 2.69±2.09 2.65±2.10 15.27±3.14 18.73±3.53 22.44±5.82 11.67±6.34 16.43±1.11 15.49±1.05
miFV-3 3.08±5.61 2.04±3.50 13.43±0.19 3.18±0.08 19.23±0.00 6.20±0.00 11.95±0.05 2.55±0.02
miFV-6 18.22±7.58 13.70±4.99 13.43±0.19 3.18±0.08 19.23±0.00 6.20±0.00 11.95±0.05 2.55±0.02
miFV-9 37.38±4.10 30.55±3.30 13.43±0.19 3.19±0.08 19.23±0.00 6.20±0.00 11.95±0.05 2.55±0.02
miFV-10 33.57±4.67 27.30±4.37 13.43±0.19 3.18±0.08 19.23±0.00 6.20±0.00 11.95±0.05 2.55±0.02

kernel matrices. Pruned dynamic programming methods, i.e., PELT, e-cp3o and ks-cp3o, can save a lot of runtime compared 
with the original DP method KCpE. Our proposed method also saves a lot of runtime compared with the original dynamic 
programming method KCpE, and surpasses other kernel-based methods.

4.4. Experiments for joint segmentation and feature extraction

4.4.1. Experimental setup
In this scenario, we investigate the joint segmentation and classification performance of our method. For baseline meth-

ods, we apply the segmentation methods mentioned in their papers (for miFV method, sliding window methods are applied), 
and then conducted the corresponding feature extraction methods. The segmented data is randomly split into training and 
testing sets with a ratio of 70% : 30%. Both the training and testing data are set to contain activities of all classes. All the re-
sults are reported by taking average values together with the standard deviation over 6 repeated experiments. We compare 
the proposed method with the state-of-the-art baselines. In order to compare segmentation and feature extraction methods, 
to minimize the impact of classifiers, SVM is chosen as the unique classifier, and we use LIBSVM [6] for implementation.

4.4.2. Baselines
• ECDF-d. ECDF-d extracts d descriptors per sensor per axis. The range is set to d ∈ {5, 15, 30, 45} following the settings 

in [16].
• SAX-a. Following the settings in [26], we set N to be the number of frames of the segment, n to be the dimension of 

features (thus no dimension reduction), alphabet_size a ∈ {3, ..., 10}.
• miFV-c. miFV [51] is a state-of-the-art multi-instance learning method. It treats each segment of frames as a bag of 

instances, and adopts Fisher kernel to transform each bag into a vector. We follow the parameter tuning procedure 
in [51] with PCA energy set to 1.0 and the number of centers c ∈ {3, 6, 9, 10}.
10
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4.4.3. Experimental results
As listed in Table 4, our proposed S-SMMAR has the best performance on all four datasets. The results clearly demonstrate 

the efficacy of our proposed unified framework to do segmentation and feature extraction. One potential reason of our 
proposed method surpassing other baselines may come from two aspects: 1) our segmentation methods are more accurate 
than the preprocessing step in baselines, which supports our motivation that segmentation is a crucial preprocessing step; 2) 
our feature extraction has no information loss but the baselines can only extract limited number of features. Nevertheless, 
the trade-off between performance and runtime is inevitable, i.e., our proposed method takes more runtime (around 30 
minutes) than baseline methods (less than 10 minutes).

4.5. Experiments for classification with perfect segmentation

4.5.1. Experimental setup
In this scenario, we are given the ground truth segments of the raw data beforehand, and hence we focus on the 

classification performance of our proposed method. In our experiments, each dataset is randomly split into training and 
testing sets using a ratio of 70% : 30%. Missing values are replaced by the mean values of the certain class in the training 
data. PCA is conducted as preprocessing with 90% variance kept. All the results are reported by taking average values 
together with the standard deviation over 6 repeated experiments. We use SVMs as the base classifier, and LIBSVM [6]
for implementation. For overall comparisons between our proposed methods and baseline methods, we use the RBF kernel 
k(x, x′) = exp(−γ ‖x − x′‖2). Note that in S-SMMAR , we use RBF kernels for both kernel embedding within each segment and 
classifier learning over different segments. We will further investigate different choices of kernels in S-SMMAR . We tune the 
kernel parameter γ as well as the tradeoff parameter C in LibSVM, and choose optimal parameter settings based on 5-fold 
cross-validation on the training set. We compare S-SMMAR with the following baseline methods.

4.5.2. Baselines
Segment-based methods: this type of methods aims to aggregate sensor-reading segments of variable-lengths into feature 

vectors of a fixed-length. In order to compare feature extraction methods, to minimize the impact of classifiers, SVM is 
chosen as the unique classifier for different feature extraction methods.

• Moment-x. All the frames in a segment are aggregated by extracting different orders of moments to concatenate a single 
feature vector to be fed to SVMs. We use Moment-x to denote up to x orders of moments (inclusive) are extracted to 
generate a feature vector.

• ECDF-d. As introduced in previous section.
• SAX-a. As introduced in previous section.
• miFV. As introduced in previous section. Optimal results are displayed with the number of centers from 1 to 10.

Frame-based methods: This type of methods considers each frame as an individual instance, whose class label is as the 
same as the corresponding segment’s.

• SVM-f apply a SVM on frame-level data.
• KNN-f apply a kNN classifier on frame-level data, where the value of k is tuned in the range of {1, ..., 10}.

4.5.3. Overall experimental results
The overall comparison results of proposed methods along with all the baseline methods are presented in Table 5. It is 

clear that with the perfect segmentation, the classification results are much better than those in Table 4. As can be seen 
from the table, on average, the performance of S-SMMAR /Moment-x/ECDF-d methods is much more stable than that of other 
methods. For example, SAX-a methods perform very well on Skoda, but perform very poor on all the other datasets. And our 
proposed S-SMMAR performs best on three out of four datasets. This illustrates the effectiveness of using kernel embedding 
technique to generate feature vectors in a RKHS for capturing any order of moments of a segment. Moreover, we can also 
observe from the table that in general, SVMs trained on feature vectors that contain more moment information perform 
better. For instance, on average, Moment-10 > Moment-5 > Moment-2 > Moment-1 on the datasets Skoda, WISDM, and 
HCI. One might notice that miFV performs very poor on all the four datasets. The reason is that it’s not robust enough 
with respect to imbalanced class and the Null class interruption in the activity data. If the activity data is arranged into 
a balanced manner, the performances of miFV improve about 10%. If the Null class is removed, the performances improve 
about 30%.

4.5.4. Impact on orders of moments
To further investigate impact of different orders of moments to be used for constructing feature vectors on activity 

recognition, we conduct experiments on HCI as shown in Fig. 1. In the figure, different curve denotes different sampling 
frequency on sensor readings, which results in different numbers of frames per segment on average. The x-axis indicates up 
to what orders of moments are used. Though the recognition results are more or less effected by using different sampling 
11
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Table 5
Overall comparison results on the four datasets (unit: %). The perfect prediction on HCI lies in the fact that the large # En. from Table 1. It 
means much more accurate record of each activity. WISDM has the same advantage, but the problem lies in the large # Sub., which greatly 
enlarges variance of each class, thus affects the prediction.

Skoda WISDM HCI PS

Methods miF maF miF maF miF maF miF maF

S-SMMAR 99.61±.24 99.60±.25 55.87±2.66 56.09±3.03 100±0 100±0 96.74±1.20 96.72±1.22
Moment-1 92.46±1.97 92.39±2.01 38.30±4.10 44.63±12.22 91.35±2.28 91.32±2.33 93.90±.94 93.85±.93
Moment-2 92.27±1.47 92.14±1.49 52.55±1.46 57.21±7.22 96.47±.79 96.47±.77 95.95±.86 95.94±.86
Moment-5 94.49±1.66 94.45±1.70 57.31±5.91 62.52±9.81 97.76±.79 97.77±.78 93.31±.99 93.42±.93
Moment-10 95.24±.63 95.23±.64 57.79±3.97 62.44±8.02 98.72±.79 98.72±.79 91.93±1.44 92.00±1.36
ECDF-5 92.96±1.57 92.95±1.52 52.77±2.73 56.22±7.33 100±0 100±0 95.63±1.07 95.63±1.06
ECDF-15 93.62±1.34 93.60±1.36 54.01±3.09 57.47±7.65 100±0 100±0 93.97±.96 94.04±.97
ECDF-30 93.25±1.11 93.21±1.15 55.33±4.50 58.26±7.13 100±0 100±0 90.82±.53 91.05±.57
ECDF-45 92.20±1.07 92.20±1.13 53.46±2.84 57.77±7.02 100±0 100±0 87.15±1.32 87.23±1.59
SAX-3 94.54±1.28 94.48±1.21 32.90±1.47 23.62±1.81 21.15±0 7.39±0 50.28±2.40 41.30±3.89
SAX-6 96.13±1.57 96.10±1.55 35.49±3.11 28.77±2.82 21.15±0 7.39±0 52.95±2.54 46.86±.68
SAX-9 97.36±1.33 97.31±1.34 32.43±1.16 23.84±1.61 21.15±0 7.39±0 51.70±1.14 43.58±1.52
SAX-10 96.22±.84 96.18±.83 32.57±1.48 26.89±2.39 21.15±0 7.39±0 52.81±1.08 44.60±1.52
miFV 61.40±3.24 53.63±2.50 14.61±2.04 4.72±2.13 21.64±1.58 18.78±2.24 15.32±4.28 7.65±5.83

SVM-f 93.46±1.20 92.65±1.38 27.49±2.71 18.70±2.88 99.52±.53 99.52±.53 95.22±1.10 95.21±1.10
kNN-f 93.17±1.44 92.93±1.45 28.48±2.15 17.96±2.84 99.04±1.22 99.05±1.21 94.73±.65 94.72±.65

Fig. 1. Comparison results of Moment-x in terms of miF on HCI by varying moments and frequencies.

frequencies on sensor readings, their increasing trends with more orders of moments are the same. These favourably prove 
our idea that incorporating more moment information in the feature vectors benefits the activity recognition performance. 
Hence the proposed method is likely to perform the best since all orders of moments information are utilized in the 
proposed method.

4.5.5. Impact of sampling frequency on sensor readings
Maurer et al. [30] found that when increasing the sampling frequency, there is no significant gain in accuracy above 20Hz 

for activities. Here, we conduct experiments to analyze the impact of sampling frequency on the classification performance 
of S-SMMAR . Fig. 2 shows the miF performance of S-SMMAR on Skoda under different sampling rates varying from 0.5Hz 
to 14Hz, resulting in average numbers of frames per segment varying from 3 to 68. The classification performance increases 
with larger average number of frames per segment, then becomes stable between 10 to 70 frames/segment. Therefore, our 
suggestion is that to use S-SMMAR for activity recognition, each segment needs to contain 10 or more frames, which is 
reasonable in practice.

4.5.6. Impact on different choices of kernels
In S-SMMAR , there are two types of kernels: k(·, ·) for kernel embedding within each segment (3) and k̃(·, ·) for training 

a nonlinear classifier (4). In this section, we conduct experiments to investigate the impact of different combinations of 
kernels on the final classification performance of S-SMMAR . The results are shown in Table 6, where linear kernel (LIN), 
polynomial kernel of degree 3 (POLY3), RBF kernel and sigmoid kernel (SIG) are used. When S-SMMAR uses the RBF kernel 
for both k(·, ·) and k̃(·, ·), it performs best. Moreover, when the sigmoid kernel is used for kernel embedding, S-SMMAR

performs worst. This may be because sigmoid kernel is not positive semi-definite, thus not characteristic, which may not be 
able to capture sufficient statistics for each segment (or sample).
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Fig. 2. The miF performance on Skoda under different sampling frequencies and different average numbers of frames for each segment. The x-axis on the 
top and the x-axis are relevant as a lower sampling frequency on sensor readings leads to a smaller number of frames per segment.

Table 6
Comparison performance in terms of miF of S-SMMAR on Skoda 
with different combinations of kernels.

k̃(·, ·)
LIN POLY3 RBF SIG

k(
·,·

)

LIN 91.4300 91.3852 91.3632 28.6446
POLY3 98.1202 98.0728 98.1556 92.0938
RBF 98.1422 90.8818 98.8950 98.3728
SIG 87.7026 87.0830 90.4140 90.4176

Fig. 3. Comparison results between S-SMMAR and R-SMMAR in terms of runtime and miF score on Skoda.

4.5.7. Experimental results on R-SMMAR

In our final series of experiments, we test the scalability and effectiveness of our proposed accelerated version R-SMMAR . 
Fig. 3 illustrates the trends of performance and runtime with increasing sizes of random feature dimension D , respectively. 
The experiments are conducted on a Linux computer with Intel(R) Core(TM) i7-4790S 3.20GHz CPU. The runtime in seconds 
shown in the figure is the total runtime in both training and testing. As can be seen that with the increase of D , the runtime 
of R-SMMAR increases accordingly, and performance in terms of miF becomes higher. Note that the best performance of S-
SMMAR in terms of miF on Skoda is 99.61%, with runtime of 264 seconds. R-SMMAR is able to achieve a comparable miF 
score with small standard deviation when 10 ≤ D ≤ 40, while requires much less runtime. Therefore, compared with S-
SMMAR , R-SMMAR is an efficient and effective approximation approach, which is suitable for large-scale datasets. It saves a 
large proportion of runtime, and at the mean time, achieves comparable performance.
13
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5. Conclusion and future work

In this paper, we propose a novel unified weakly-supervised framework, S-SMMAR , to jointly segment the activity data 
and extract all statistical moments of the activity data. This is the very first work to apply the idea of kernel embedding in 
the context of activity recognition problems. We investigate the performance of general time-series segmentation methods 
on the specific activity data. We conduct extensive experiments and demonstrate the effectiveness of S-SMMAR compared 
with a number of baseline methods. Moreover, we also present an accelerated version R-SMMAR to solve large-scale prob-
lems. In the future, besides statistical information, we plan to extend the proposed method to capture temporal information 
of each segment for learning feature representation of each segment.
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